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and thus it must be true of all subsequent pairs. The 
same must also be true in the other direction from P. 
We conclude that the line we are considering must 
contain a set of intervals of length d with the periodic- 
ity of the 2-intersections, inside of which no 1-inter- 
section can lie. This, however, is impossible because 
the period of the 1-intersections is incommensurate 
with the period of the 2-intersections. Thus d must 
be zero, the 2-intersections must indeed coincide, and 
the position of family 2 is fixed with respect to families 
0 and 1. 

The rest of the proof is simple: any other family 3 
that is not parallel to family 0 must have a spacing 
between intersections along a line in family 0 that is 
incommensurate with the spacings of either family 1 
or of family 2 on family 0 (since if it were commensur- 
ate with both then families 1 and 2 would have com- 
mensurate slSa.cings). Therefore, by repeating the first 
part of the argument we can conclude that the position 
of family 3 is fixed with respect to either family 1 or 
family 2. In this way the positions of all families are 
fixed except for those given by families parallel to 
family 0. But these can now be fixed, in the same 

way, with respect to families not parallel to 0. Thus 
the grids are indeed identical except for a possible 
translation. 
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Abstract 

A geometrical 'WPV' notation for the 371 crystallo- 
graphic space groups describing mono-incom- 
mensurate phases of physical space in four- 
dimensional space is proposed, which completes the 
geometrical 'WPV' notation for all crystallographic 
point symmetry groups. The WPV symbols are given 
for the 76 mono-incommensurate arithmetic classes, 
or Z classes. Definitions and some examples of Z 
classes, Bravais types, Bravais flocks, Q classes (or 
geometrical classes or point groups), holohedries and 
crystal families both in the physical space and the 
superspace [E 4 a r e  given. 

Introduction 

In a previous paper (Weigel, Phan & Veysseyre, 1987) 
we have given a simple geometric symbol, the 'WPV' 

0108-7673/89/080547-11 $03.00 

symbol, for each of the 227 crystallographic point 
symmetry groups (PSGs) of the four-dimensional 
space IF 4. In this article we propose a WPV symbol 
for 371 crystallographic symmetry space groups 
(SSGs) belonging to the seven crystal systems of [E 4 

describing the mono-incommensurate phases of the 
physical space. 

A symmetry space group of the Euclidean space 
l~n is the group of all the crystallographic symmetry 
operations (SOs), or isometries, mapping one crystal 
structure onto itself. A space group is always an 
infinite group because a crystal structure has infinitely 
many symmetry translations. The set of all the transla- 
tion vectors of IE n mapping a crystal structure onto 
itself is the lattice of this strucU:,~. A lattice of IE" is 
defined by n linearly independent vectors ei (i varying 
from 1 to n). So it depends, in the most general case, 
on n parameters of length and n ( n -  1)/2 parameters 
of angle. 

O 1989 International Union of Crystallography 



548 CRYSTALLOGRAPHY, GEOMETRY AND PHYSICS IN HIGHER DIMENSIONS. VI 

Table 1. Monoclinic system 

The two subtables (a) and (b) give two possible classifications of  
the symmetry space groups of  the monoclinic system of the physical 
space n :3. (a) gives the WPV symbols of the three Q classes (first 
column), the six Z classes (second column) and the 13 space-group 
types (third column). (b) gives the classification of the space-group 
types into the two Bravais flocks of  this system, i.e. monoclinic P 
and monoclinic B. 

(a) 
Q classes or 
point groups 

2 

m 

2/m 

(b) 
Bravais types of  lattices 

Monoclinic P 

Monoclinic B 

Z classes Space-group types 

2 P P2; P2 t 
2 B B2 
m P Pm; Pb 
m B Bin; Bb 

2/m P P2/m; P2,/m; P2/b; P21/b 
2/m B B2/m; B2/b 

Bravais flocks 

P2; P2t; Pro; Pb 
P2/m; P2Jm; P2/b; P2t/b 

B2; Bm; Bb; B2/m; B2/b 

In addition to the translations, another type of SO 
belongs to the SSG of a symmorphic crystal structure 
(see definition later); these are the point symmetry 
operations (PSOs) that we have defined and classified 
in a previous paper (Weigel, Veysseyre, Phan, 
Effantin & Billiet, 1984). These PSOs are called 'linear 
constituents' by Brown, Billow, Neubiiser, Wondrat- 
schek & Zassenhaus (1978) and they make up a finite 
group isomorphic to the factor group of the SSG by 
the normal subgroup of all symmetry translations. 
This finite group is the PSG of the cell. If we choose 
a lattice basis, these PSOs are described by uni- 
modular matrices of order n (their entries are integers 
and their determinant equal to +1). 

As the number of SSGs in IF" is infinite it was 
necessary to classify them into a finite number of 
classes. Different classifications have been proposed 
(Brown et al., 1978; Schwarzenberger, 1980; 
Neubiiser, Plesken & Wondratschek, 1981 ). Here we 
illustrate the classification given by Brown et al. 
(1978) with some examples in physical space in order 
to prepare the way for § I of this paper. 

The basic notion is the one of space-group type. For 
instance, let us consider the triclinic lattice of IF 3 and 
the space-group type P1. This lattice is defined by 
three parameters of length (a, b, c) and three of angles 
(~,/3, ~,). 

The space-group type of the triclinic lattice contains 
all the SSGs of the infinity of triclinic lattices, defined 
by all the possible values of the six parameters 
(a, b, c, 4,/3, ~). In mathematical terms, we say that 
these SSGs are equivalent modulo an affine mapping. 
So there are 17 space-group types in II :2, 219 in IF 3 and 
4783 in n:4; or, rather 230 in 0=3 and 4895 in [E 4 because 
11 space-group types in II :3 and 112 in II :4 split into 
enantiomorphic pairs. 

A SSG is said to be symmorphic if its PSG is one 
of its subgroups; for example the monoclinic SSG 
P2 is symmorphic, but the monoclinic SSG P21 is 
not symmorphic. 

Now let us consider a definite crystal structure. 
Different lattice bases can be chosen to describe the 
SOs of this structure. All the SSGs so obtained belong 
to an 'arithmetic class' or Z class. For instance in E3 
the monoclinic Z class 2B contains one space-group 
type B2 while the monoclinic 2P contains two space- 
group types, P2 and P21 (see Table 1). A Z class is 
therefore associated with a structure and a PSG. This 
PSG maps the crystal structure onto itself but the 
associated lattice may have other isometries: let us 
consider the SSG B2; the associated (empty) lattice 
has for SSG B2/m.  In this way, we define a particular 
Z class or Bravais Z class which contains the SSGs 
which describe all the isometrics of an (empty) lattice 
with respect to all possible lattice bases. So the mono- 
clinic crystal system of II :3 has two Bravais Z classes, 
2/m P and 2/m B (Table 1 a). 

Two lattices belong to the same Bravais type of 
lattice if they both determine the same Bravais Z 
class. The concept of centring lattice is the same as 
for the two- or three-dimensional space; it is always 
defined relative to a basis. 'A lattice L in IF" is con- 
sidered centred with respect to a basis B if all vectors 
in IE" that have integral coefficients with respect to 
B belong to L, but if there exists some vector of L 
whose coefficients with respect to B are not all 
integral' (Brown et al., 1978). So a Bravais type of 
lattice can be primitive or centred, e.g. monoclinic 
B. There are 14 Bravais types of lattices in ~:3 and 
64 in IF 4. 

Mathematically, it may be proved that each Z class 
A may be associated with a particular and unique 
Bravais Z class B in the following sense: each finite 
unimodular (f.u. for short) group of A is a subgroup • 
of some f.u. group in B but it is not a subgroup of 
any f.u. group belonging to a Bravais Z class of 
smaller order. 

The set of Z classes associated with a particular 
Bravais Z class is called a Bravaisflock. So there are 
14 Bravais flocks and 73 Z classes in IF 3 and 64 and 
710, respectively, in IF 4. We can give an example in 
E3: the Bravais type of lattice monoclinic B is associ- 
ated with the Bravais flock (B2, Bin, Bb, B2/m,  B2/b)  
(see Table lb). 

If we just consider the PSG of the space-group 
type, another classification may be ob ta ined- the  
geometric classes or Q classes or point groups - which 
describe the macroscopic properties of a crystal struc- 
ture. Table 1 lists the Q classes of the monoclinic 
system. 

In this case, it is possible to use a general basis 
and not necessary a lattice basis. The Q classes or 
point groups realize a classification of the Z classes. 
Two SSGs belong to the same Q class if their PSGs 



T. PHAN, R. VEYSSEYRE, D. WEIGEL AND D. GREBILLE 549 

are equivalent modulo a real non-singular matrix. If 
among the Z classes belonging to a Q class there is 
at least one Bravais Z class, this Q class is said to 
be a holohedry. 

There are 32 Q classes or crystallographic point 
groups and 7 holohedries in IF 3 and 227 and 33, 
respectively, in n :4. 

In 0:3 the Q class 2 /m is a holohedry because 2 /m P 
(and also 2 /m B) is a Bravais Z class. 

The Q classes and the Bravais flocks are two sub- 
divisions of the set of all the Z classes and of all the 
types of SSGs. The definition of crystal families is a 
dimension-independent classification whereas the 
various definitions of a crystal system depend on the 
dimension of the space. 

'A crystal family is the smallest set of space-group 
types containing, for any of its members, all space- 
group types of the Bravais flock and all space-group 
types of the Q class, to which this member belongs' 
(Neubiiser et al., 1981); e.g. in [i=3 there are six crystal 
families: triclinic, monoclinic, orthorhombic, 
tetragonal, hexagonal and cubic, and there are 23 
crystal families in R :4 (Brown et al., 1978; Weigel et 
al., 1987). 

Into the spaces of 2, 3 or 4 dimensions, it is possible 
to associate with a Q class a unique holohedry in the 
same way as a Z class is associated with a unique 
Bravais Z class. Then a crystal system is the set of 
the Q classes associated with the same holohedry. So 
there are seven crystal systems in ~:3, because the 
hexagonal family splits into two crystal systems: the 
rhombohedral system and the hexagonal system. 
There are 33 crystal systems in ~:4. But this definition 
is not exact for higher-dimensional spaces (Neubiiser 
et al., 1981), in which it is not convenient to use the 
concept of crystal system. 

We summarize all these notions with the mono- 
clinic system of E3; the cell of this crystal structure 
is a right hyperprism based on a parallelogram. 

This crystal system contains three Q classes or point 
groups: (1) the holohedry 2/m of order 4 (the four 
elements are 1, 2xy, mz, lxyz);  (2) the Q class m; 
(3) the Q class 2. m and 2 are subgroups of the 
holohedry 2/ m. 

The monoclinic system may be primitive P or with 
one centred face: the (a, c) face. This type of centring 
is denoted B in International Tables for Crystallog- 
raphy (1987) (IT). So this system contains two 
Bravais types of lattice, monoclinic P and monoclinic 
B. The Q class 2/m contains two Z classes: 2/m P 
and 2/ m B. 

The Z class 2 /m P contains four space-group types: 
P2/m which is symmorphic, P21/m, P2/b and 
P21/b; the Z class 2/m B contains only two space- 
group types, B2/m, which is symmorphic, and B2/b. 
The other space-group types are given in Table 1 (a). 
The classification into Bravais types of lattice is given 
in Table l(b).  

I. WPV symbols for the SSGs of the seven 
mono-incommensurate crystal systems of [4 

We recall that a crystal structure is said to be mono- 
incommensurate (MI for short) if the experimental 
diffraction pattern of this phase is described by four 
Miller indices: 

H = ha* + kb* + Ic* + mq* 

where h, k, l, m are integers, 

q* = aa* +/3b*+ yc* 

(1) 

(2) 

and at least one of the three entries is irrational. 
de Wolff (1974) has proved that the matrices which 

describe the PSOs of such a phase have the following 
form with respect to an orthonormal basis: 

Q 0 

e 0 
0 0 e 

where Q is a 2 x 2 matrix and e = +1. There are six 
types of (MI) + PSO if e = +1 and five types of (MI) -  
PSO if e = - 1  (Weigel & Bertaut, 1986; Veysseyre & 
Weigel, 1989). The (MI) ÷ PSOs have for WPV 
symbols: 

=el ±1  ±1  1, 2xv, 3xy,  4xy,  6xy,  mx 

and the (MI) -  PSOs: 

±1  ±1  
2zr ,  ]'4, 2zr3 xY, 2zr6xy,  i xzr .  

In formula (2), if the three coefficients are irrational, 
only the PSOs 1 and 14 may appear . I f  two coefficients 
are irrational, only the PSOs 1, 14, mx, lXZT niay 
appear. Lastly, if just one coefficient is irrational, all 
the (MI) PSOs may appear. A PSG is a (MI) PSG if 
all its elements are (MI) PSOs. 

A crystal system is a (MI) crystal system if it con- 
tains only (MI) PSGs. 

Just seven crystal systems in the four-dimensional 
space ~74 can describe the (MI) crystal structure (de 
Wolff, 1974; Veysseyre & Weigel, 1989). They corre- 
spond to the systems 1, 2, 3, 4, 7, 8 and 9 (Wondrat- 
schek, Billow & Neubiiser, 1971). 

In Table 2 we give the geometrical names of these 
seven systems, the WPV symbols of the corresponding 
holohedries and the Bravais types of each system. 
There are 16 Bravais types. These seven systems con- 
tain 30 Q classes, i.e. 30 PSGs, 76 Z classes and 371 
space groups. Brown et al. (1978) have given a listing 
of all the 4783 space-group types of H :4. For each SSG, 
some SOs, generators of the group, are given. 

They are described by 5 x 5 matrices with respect 
to a chosen basis lattice. Any matrix of these SOs is 
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Table 2. The 16 Bravais types o f  the seven mono-incommensurate systems 

The numerotations of  the crystal family and of  the crystal system are recalled in the first and the second columns. We give the geometrical 
name of each mono-incommensurate system in the third column and the WPV symbol of  its holohedry in the fourth column. Finally 
in the fifth column the 16 Bravais types are listed with respect to the corresponding systems with the following centring types (the 
coordinates of  all the centring points are explicitly written). 

Primitive: P 
One centred face: S(Z, T) 

S( Y, Z)  
Two centred faces: D(X,  T)( Y, Z )  
Three centred faces: F(  Y, Z, T) 
Body centred: I( Y, Z, T) 
Rhombohedron: R( Y, Z, T) 

(o, o, o, o) (o, o, ½, ') 
(o, o, o, o) (o, ½, ½, o) 
(o, o, o, o) (½, o, o, ') (o, ½, i, o) (½, ½, ½, ~) 
(o, o, o, o)(o, o,½,')(o, ½, o , ' ) (o ,L  L o) 
(o, o, o, o) (o, ½, ½, ½) 
(o, o, o, o) (o, ~-, ~, ~) (o, ~, ~, ~) 

'WPV' symbol of 
Family System Geometrical name the holohedry Bravais types 

I 01 Hexaclinic 14 P 

II 02 Right hyperprism based on parailelepiped ( XYZ) ] ± m P, S(Z, T) 

III 03 Di orthogonal parallelograms (XY) ( ZT) 2_1_2 P, S( Y,Z), D( X, T)( Y,Z) 

IV 04 Orthogonal parallelogram (XY) rectangle (ZT) 2 _1_ 2, m, m P, S( Y, Z), S(Z, T), I( Y, Z, T), 
D(X, T)( Y, Z), F( Y, Z, T) 

VI 07 Orthogonal parallelogram (XY) square (ZT) 2_1_4, m, m P, I( Y, Z, T) 

08 Orthogonal parallelogram (XY) hexagon (ZT) R( Y, Z, T) centred 26, m, 
VII P, R( Y, Z, T)* 

09 Orthogonal parallelogram (XY) hexagon (ZT) 2 ± 6, m, m 

* Only for the system 08. 

determined by tlt (t) A t2 t2 
t =  

t3 t3 

t4 

0 0 0 

where A is a 4 x 4  matrix of a PSO (Weigel et al., 
1984) and t is a rational 4-column or ' translation 
vector'. 

The symmorphic space group of each Z class which 
is the head of the Z class corresponds to a SSG with 
t = 0 for each generator. 

It is clear that other generators would be given in 
many cases. The matrices A are generators of the 
corresponding PSG. These generators appear often 
in the WPV notation of the PSG (Weigel et al., 1987). 

Other generators are sometimes used and in our 
notation we frequently indicate more generators than 
necessary; the same is true for Hermann-Mauguin  
notation in physical space. 

Let us give one example. In the system VI.07 or 
orthogonal parallelogram ( X Y )  square ( Z T )  the PSG 

+1 06 is described by two generators 4zT and mz; its 
order is 8. Respecting the notation of Hermann-  
Mauguin, we have called it 4, m, m. Thus its elements 
are 

±1 
1, 4ZT , 2ZT , mz,  mT,  m Z + T ,  mz-:r .  

Other generators, such as mr and mz+T, for 
instance, are possible. 

We have previously given the matrix of a general 
SO. In the physical space tE3, two types of glide SOs 
exist: the helirotations, for example 41 (or 4 c / 4 )  and 
the glide reflections as a (or ma/2 or ma for short) and 
n (or ma÷b/2 or ma÷b). The corresponding matrices 
are the matrices 1, 2 and 3. In the space tE a, three 
types appear: 

0 -1  0 

1 0 0 

0 0 1 

0 0 0 

Matrix number 1. Helirotation 4 I. 

1 0 0 ) 

0 1 0 

0 0 -1  

0 0 0 

Matrix number 2. Glide reflection a = m a. (oo) 
0 1 0 

0 0 -1  

0 0 0 

Matrix number 3. Glide reflection n = m~+ b. 
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Glide inversions: 1., for example,  is the product  of  
the inversion 1yZT and the t ranslat ion of  vectors a / 2  
parallel  to the x axis (matr ix 4). We recall that a, b, 
c and d are the vectors which  define the crystal cell 
whereas (X, Y, Z, T) denote the mathemat ica l  basis. 1000i) o -1 o o o 

0 0 -1 0 
0 0 0 -1 
0 0 0 0 

Matrix number 4. Glide inversion 3=. 

Glide rotations: 2a+b is the product  of  the rotation 
2z r  and the t ranslat ion of  vector ( a + b ) / 2 .  1 4a(ZT ) is 
the product  of  the rotation 4~r  and the t ransla t ion 
of  vector a / 2  (matrix 5). 

1 0 0 0 

0 1 0 0 
0 0 0 -1 
0 0 1 0 
0 0 0 0 

Matrix number 5. Glide rotation 4a(ZT). 

Glide reflections: ma+b+c, for example,  is the prod- 
uct of  the reflection m r  about  the hyperp lane  ( X Y Z )  
and the t ransla t ion of  vector ( a + b + c ) / 2 .  

When the vector of  the t ranslat ion is a /2  or (a + b) /2  
the t ranslat ion is denoted a or a + b, for short, as usual  
in F 3. In the other cases, e.g. i f  the glide vector is a / 4  
or ( b + c ) / 3  the complete  vector is kept in the symbol,  
as for the glide rotation 3b/3(ZT) (matrix 6). (1000i) 0 1 0 0 ½ 

0 0 -1 -1 
0 0 1 0 
0 0 0 0 

Matrix number 6. Glide rotation 3b/3(ZT ). 

Now we are going to describe one Q class, VI-07-06, 
the sixth Q class of  the seventh system of  the sixth 
family. 

This Q class (see Table  3) has two Z classes, 
VI-07-06-01 and VI-07-06-02 (notation of  Brown et 
al., 1978). The first Z class corresponds to the Bravais 
type P primitive. It is denoted 4, m, m P. It includes 
ten space groups. The first is the symmorph ic  space 
group denoted P4, m, m. The second is generated by 
41 and mr (matrices 5 and  7). The leading elements 

( ) 1 o o o o 
o 1 o o o 
o o 1 o o 
o o o -1 o 
o o o o 1 

Matrix number 7. Reflection mr. 

of  this space group are* 

+1 - 1  1, 2ZT, mz, mT, ma(z+T), ma(z-T), 4a(ZT), 4a(ZT ). 

We denote it by P 4a, m, m. The other space groups 
of  this Z class are descr ibed in the same way. 

The second Z class, VI-07-06-02, corresponds to 
the Bravais type I ( Y, Z, T) centred. It is denoted by 
4, m, m L It includes  n ine  space groups. The first is 
the symmorph ic  space group I ( Y, Z, T) 4, m, m. The 
third is generated by 4~/4 and mb+c (matrices 8 and 
9). Its leading elements are: 

1, 2 b ( Z T  ) , mz, m b + e ( T  ) , mb/4(Z+T)  ," 

+1 - 1  mb/4(Z-T), 4b/4(ZT), 4b/4(ZT)" 
We write it as I (Y, Z, T) 4b/4, m, mb+c. 

0 0 0 
1 0 0 

0 0 -1 
0 1 0 
0 0 0 

Matrix number 8. Glide rotation 1 4b/4(ZT) • (1000i) 0 1  0 0 ½  
0 0 1 0 
0 0 0 -1 
0 0 0 0 

Matrix number 9. Glide reflection mb+c(r). 

II. T a b l e  o f  the 371 m o n o - i n c o m m e n s u r a t e  
space  groups  with their  W P V  s y m b o l s  

The 371 space groups of  the seven mono- incom-  
mensurate  systems are listed in Table 3. They are 
classified by  systems, wi thin  each system by Q classes 
and within each Q class by Z classes. We recall the 
notat ion of  Brown et al. (1978) and we give our 'WPV'  
notat ion for each space-group type. So 04-01-02-003 
or S(Z, T) 2, mb, mb, in WPV notation, is the third 
space group of  the second Z class 2, m, m S(Z, T) 
associated with the first point  group 2, m, rn of  the 
system 04: or thogonal  para l le logram ( X Y )  rectangle 
(ZT). For each Q class or point  group some gen- 
erators are given; these generators appear  in the WPV 
notation. They are often too many  as expla ined  pre- 
viously. For example  we have given three generators 
for the Q class 04-01: 2zr, mz, mT, but only two of  
them would be sufficient. 

Sometimes the disposi t ion of  the geometrical  sup- 
ports of  generators with respect to the cell of  the 
crystal does split  some Q classes into two parts. This 

* We recall that a SSG is an infinite group. All its elements are 
obtained by products of these leading elements and of all the 
translations of the lattice. 
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Table 3. WPV notation of the 371 crystallographic SSGs of the seven mono-incommensurate systems 

This table is divided into subtables, one for each system. Each subtable is divided into several parts, one for each Q class belonging 
to the corresponding system. For each Q-class heading generator SOs are written. The space groups are regrouped into Z classes 
characterized by their centring types. 

The notation is as follows: 

System-Q class-Z class-Space group. 
For instance, 09-06-02-001 is the first space group of the second Z class of the sixth Q class of the ninth system. 

I-1 H e x a c l i n i c  

01-01-01-001 P 1 01-02-01-001 P 14 

1I-2 Right  h y p e r p r i s m  b a s e d  on  pa ra l l e l ep iped  ( X Y Z )  

trlT 1XYZ , mT 

02-01-01-001 P m 02-03-01-001 P T .1. m 
002 mc 002 ia .1_ m 

02-001 S(Z, T) m 003 i _1_ m c 
002 m a 004 id _1_ mc 

02-001 S(Z, T) i _1. m 
i x y z  002 i .1_ m b 

02-02-01-001 P i 
002 ld 

02-001 S(Z, T) i 

I I I -3  Di o r t h o g o n a l  p a r a l l e l o g r a m s  ( X Y )  ( Z T )  

2xy 

03-01-01-001 P 2 
002 2d 

02-001 S( Y, Z) 2 
002 2d 

03-001 D(X, T) ( Y, Z) 2 

2xy, 2ZT 

03-02-01-001 P 2 _1. 2 
002 2d .1. 2 
003 2 a _1_ 2b 

02-001 S(Y, Z)  2 .L 2 
002 2d .1. 2 
003 2a .L 2. 

03-001 D(X, T) ( Y, Z) 2 _1_ 2 

fact already happens in the physical space 11:3: 3ml P 
and 31 m P are two different Z classes of the Q class 
3m. In the system 07 of ~:4, orthogonal parallelogram 
(XY) square (ZT), the Q class 07-04 or 24, m, 1 is 
divided into two subdivisions 24, 1, m and 24, m, i. 
Within the first part the two Z classes 24, i,  m P and 
24, i,  m I are generated by 2xy, 4~rT, iXVZ, and 
mz- r .  The leading elements of the symmorphic space 
group P 24, i,  m are 

l ,  2 x y ,  ±1 4zr ,  2ZT, iXYZ, ixYr, mz-r, mZ+ T. 

Within the second part the Z classes 24, m, T P and 
24, m, l i  are generated by 2xy,41zr, mz, and 
lxyz-r;  the leading elements of the symmorphic 
space group P 24, m, T are 

±1 1, 2 x y 4 z T ,  2ZT, mz, mr, i x y z -T ,  ixyz+ T. 

Another classification of the space-group types, 
different from the previous one, is possible. Instead 
of regrouping the SSGs into Z classes we gather them 
into Bravais flocks, i.e. according to the types of 
lattices. 

Let us consider for instance the system 03 or di 
orthogonal parallelograms; it contains three Bravais 
types of lattices: di orthogonal parallelograms P; di 
orthogonal parallelograms S(Y,Z); di orthogonal 
parallelograms D(X, T)( Y, Z). These three types of 
centring are explained in the caption to Table 2. 

The Bravais Z class of the first type is the Z class 
2 _1_ 2P. In addition it contains the Z class 2P; the first 
one, 2_1_2P, contains three SSGs, P2_1_2, P2d-t-2, 
P2d-l-2b; the second one, 2P, contains two SSGs, P2 
and P2j; and so on for the other two Bravais types. 

We summarize this classification for all the SSGs 
of the system 03 in Table 4. 

In Tables 2-4 different types of centring appear. 
We are going to detail three examples which present 
some particularities. 

First, let us consider the di orthogonal 
parallelograms (XY)(ZT) family (or family III) and 
its holohedry 2_1_ 2 which defines the Q class 03-02. 
This Q class contains three Z classes: 

2±2p;  2 ± 2 s ( Y , z ) ;  2±2D(X,T)(Y,Z) .  
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IV-4 Or thogona l  pa ra l l e log ram ( X Y )  rec tangle  ( Z T )  

2z-r, mz, mT 

04-01-01-001 P 2, m, 
002 2, rod, 
003 2b, mb, 
004 2b, /l~+d, 
005 2, rod, 
006 2b, mb, 
007 2b, mb+d, 
008 2, mb, 
009 2, mb+d, 
010 2.+b, m., 
011 2.+b, m.+d, 
012 2, mb+d, 
013 2.+b, ma+d, 

02-001 S(Z, T) 2, m, 
002 2b, rob, 
003 2, rob, 
004 2a+b, m., 

03-001 S( Y, Z) 2, m, 
002 2., m, 
003 2, rod, 
004 2., rod, 
005 2., m., 
006 2, m., 
007 2., m~+d, 
008 2, m.+ d; 
009 2b, m, 
010 2b, md, 
011 2.+b, m., 
012 2a+b, m.+d, 

04-001 I( Y, Z, T) 2, m, 
002 2., m, 
003 2, m., 
004 2b, mb, 
005 2.+b, mb, 
006 2b, ma+b, 
007 2b, mb, 

05-001 D(X, T)( Y, Z)  2, m, 
002 2., m., 
003 2a+b, ma, 

06-001 F( Y, Z, T) 2, m, 
002 
003 
004 
005 

m 
m 
m 
m 
me. 
me 
me 
mb 
mb 
mb 
mb 
rob+e, 
rr~+e, 

m 
m 
mb 
mb 

m 
ma 
m 
ma 
m 
ma 
m 
ma 
mb 
mb 
mb 
mb 

m 
ma 
ma 
m 
ma 
ma 
me 

m 
m 
m b 

m 
2, m(b+d)/4, m(b+e,)/4 
2a, m a , m 
2., m(2a+b+d)/4, m(b+e,)/4 
2, m., m. 

2z7-, i x v z ,  ixv-r 

04-03-01-001 P 
002 
003 
004 
005 
006 

02-001 S(Z, T) 
OO2 

03-001 S( Y, Z)  
OO2 
0O3 
004 

04-001 I(  Y, Z, T) 
002 
003 

05-001 D(X, T ) ( Y , Z )  
06-001 F( Y, Z, T) 

002 

2, i, i 
2b, i ,  i 
2, id, i 
2b, id, i 
2, id, ie, 
2b, id, ie 

2, i ,  i 
2b, i, i 

2, i ,  i 
2., i ,  i 
2, id, i 
2., id, i 

2, i, i 
2., i,  i 
2, 1, ie, 

2, i ,  i 
2, i ,  i 
2., i ,  i 

2 x v ,  mz, l xyz  

04-02-01-001 P 
OO2 
003 
004 
OO5 
006 
007 
OO8 
009 
010 
011 
012 
013 
014 
015 
016 

02-001 S(Z, T) 
002 
003 
004 

03-001 S( Y, Z)  
002 
003 
004 
O05 
006 
007 
008 

04-001 S( Y, T) 
0O2 
003 
004 
005 
O06 

05-001 I(  Y, Z, T) 
002 
003 
004 
005 
0O6 

06-001 D(X, T)( Y, Z)  2 
002 2 

07-001 F( Y, Z, T) 2 
002 2 
003 2¢c_d)/4 

2 / m, i 
2¢ / m, i 
2 d / m, i d 
2e,+d / m, i d 
2d / md, i 
2e,+d / rod, i 
2 / md, id 
2e, / rod, i d 
2 / mb, i 
2¢ / mb, i 
2d / rob, id 
2c+d / mb, id 
2 d / trba+d, i 
2e+ d / rob+d, i 
2 / rob+d, id 
2c / rnb+d, id 

2 / m, i 
2¢ / m, i 
2 / mb, i 
2e, / mb, i 

2 / m, i 
2 / m., i 
2 d / m, i n 
2 d / m., i n 
2 d / md, i 
2 d / ma+d, i 
2 / md, i d 
2 / ma+d, i d 

2 / m, i 
2¢ / m, i 
2 / m., i 
2e, / m., i 
2 / m b ,  i 
2¢ / m b , 

2 / m, i 
2: / m, i 
2 / m., i 
2e, / m., i 
2 / mb, i 
2e, / mb, i 

m, i 
ma, i 

i 
i 

m, 
ma, 
~'l(b+d)/4, 

Table 3 continued on p. 554. 
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Table 3 (cont. 2) 

I V - 4  O r t h o g o n a l  p a r a l l e l o g r a m  (XY) r e c t a n g l e  ( Z T )  

2xy ,  2zr,  mz, mr 2xy,  2 r r ,  mz, mr 

04-04-01-001 P 2 ± 2, m, m 04-04-03-001 S(Y,  Z )  
002 2d .I. 2, m, m 002 
003 2c+ d ± 2, m, m 003 
004 2c ± 2, m, me 004 
005 2e+ d ± 2, m, me 005 
006 2 ± 2, m, m¢ 006 
007 2d ± 2, m, m e 007 
008 2 ± 2b, m, mb 008 
009 2d ± 2b, m, mb 009 
010 2 c ± 2b, m, m b 010 
011 2c+d _1. 2b, m, m b 011 
012 2 C ± 2b, m, mb+ c 012 
013 2c+d ± 2b, m, rnb+ ~ 013 
014 2 ± 2b, m, nh,+¢ 014 
015 2 d i 2b, m, nh,+ c 015 
016 2~+ d ± 2, rod, m c 016 
017 2c ± 2, md, me 017 
018 2 ± 2, me,  m~ 018 
019 20 ± 2b, md, mb 019 
020 2 ± 2b, rod, m b 020 
021 2~+ a ± 2b, rod, m b 021 
022 2~ .1. 2b, md, mb 022 
023 2¢+e ± 2b, md, mb+c 023 
024 2¢ ± 2b, me,  nh,+¢ 024 

025 2 e 2. 2b, m e '  rnb+~ 04-001 I (  Y, Z, T)  
026 2 ± 2b, me,  rnb+¢ 002 
027 2 ± 2, rob'  mb 003 
028 2 e ± 2, m b '  mb 004 
029 2c+ d ± 2, m b '  mb 005 
030 2, ± 2, m b '  mb+c 006 
031 2c+ d .1. 2, m b '  mb+c 007 
032 2 ± 2, rob'  mb+c 008 
033 2d ± 2, mb, rnb+c 009 
034 2 ± 2.+b,  rob, m .  010 
035 2d ± 2a+b, rob, m .  011 
036 2c+ d ± 2a+b, mb, m.  012 
037 2 c l 2a+b' mb '  ma+c 013 
038 2c+d ± 2a+b'  mb '  ma+c 014 
039 2 l 2a+b, mb, me+ c 
040 2 e Z 2a+b, mb, me+ c 05-001 D(X, T)(Y, Z)  
041 2c+ d ± 2, mb+d, mb+ c 002 
042 2~ ± 2, mb+d, mb+¢ 003 

043 2 ± 2, mb+d' mb+¢ 06-001 F (  Y, Z, T)  
044 2e+d ± 2a+b'  mb+d' ma+c 002 

045 2c ± 2"+b'  n'lb+d ' ma+c 003 

046 2 ± 2"+b' nh'+d' ma+c 004 

02-001 S(Z, T) 2 ± 2, m, m 005 
002 2~ ± 2, m, m,  
003 2 ± 2b, m, m b 
004 2c .1. 2b, m, rob+ ~ 
005 2 ± 2, rob, m n 
006 2~ ± 2, mb, try+ e 
007 2 ± 2.+ b, rob, rna 
008 2~ _1. 2 .+b,  mb, rn~+c 

2 ± 2, m, m 

2 d ± 2, m, m 
2 ± 2., m, m. 

2 d ± 2 . ,  m, m.  
2 l 2b, m, m b 
2 d ± 2 b , m, m b 
2 d .L 2, m d, m 
2 ± 2, md, m 
2 a ± 2 , ,  m a , m i 
2 1 2., m e , m. 

2 d ± 2b, rod, mb 
2 l 2b, m d, m b 
2 ± 2 . ,  m . ,  m 
2 d ± 2 a , m a , m 
2 ± 2, m , ,  m a 
2 d ± 2, m a , ma 

2 ± 2a+b, me,  mb 
2 d ± 2a+ b, ma,  IT/b  

2 d d. 2a, H1a+ d, m 
2 ± 2a, ma+d, m 
2 d ± 2, rn~+d, m.  
2 .L 2, m.+d, m. 
2d ± 2a+b, ~ + d ,  mb 
2 ± 2a+b, /'/'~l+d, mb 

2 ± 2, m, m 

2 c ± 2, m, m 
2 ± 2b, m, m b 
2 c ± 2 b , m, m b 
2 ± 2a, m, m.  
2 c ± 2 a , m, m a 
2 ± 2a+b, me, m b 
2 c ± 2a+ b , ma, mb 
2 i 2, m., ma 

2 c l 2, m a , m .  
2 ± 2b, m a , /?la+ b 
2c ± 2b, m . ,  ma+ b 
2 ± 2, mb, m b 

2c ± 2, mb, m b 

2 ± 2, m, m 
2 ± 2a, m . ,  m 
2 i 2a+b, m , ,  m b 

2 ± 2, m, m 
2 ± 2~, m, m,  

2(_e+d)/4 .l_ 2b, m(b+d)/4, m(b+c)/4 
2(_c+d)/4 d_ 2a+b, rn(b+d)/4, m(2a+b+c)/4 
2 ± 2, m a , m a 

The cell of  this system is a parallelotope defined 
by two parallelograms which belong to the orthogonal 
planes (XY) and (ZT). A general parallelotope 
exhibits six sets of  four parallel faces: (XY) ,  (XZ) ,  
(XT), (YZ), (YT), (ZT). 

For the cell considered here, the faces are either 
parallelograms, such as (XY) and (ZT),  or rec- 
tangles, such as (XT) ,  (XZ) ,  (YZ)  and (YT).  

In the space IF 2, we recall that only the rectangular 
cell can be centred, the three others always being 
primitive (parallelogram, square and hexagon). So 

there is only one Bravais type S in family III, e.g. 
S(Y, Z),  the other two Bravais types being P and 
D(X, T)(Y,Z), where two sets of rectangles are 
simultaneously centred. 

Then let us consider the orthogonal parallelogram 
(XY) square (ZT) family (or family VI system 07). 
The square and one side of  the parallelogram generate 
a right prism based on a square or tetragonal system; 
in ~:3 this system only contains two Bravais types P 
and I; the same result occurs in ~:4. The parallelogram 
and one side of  the square generate a right prism 
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VI-07 O r t h o g o n a l  para l l e logram (XY)  square  ( Z T )  

2xy4  1 , 

07-01-01-001 P 24 
02-001 I (  Y, Z, T) 24 

4~  

07-02-01-001 P 4 
002 4b/4 
003 41, 

02-001 I (  Y, Z, T) 4 
002 4(_a+b)/4 
003 4=+ b 
004 %/4 

2Xy  , 4 

07-03-01-001 P 2 ± 4 
002 2e+ d .1_ 4 
003 2 .1. 4 b 
004 2c+ d .1. 4 b 

02-001 / (  Y, Z, T) 2 Z 4 
002 2e ± %/4 
003 2 ± 4a+ b 

2 x v 4 ~ r ,  i x y z ,  m z - T  

07-04-01-001 P 24, 1, m 
002 24, i"," m b 
003 24, i"d, m 
004 24, ld,  mb 

04-001 I (  Y, Z, T) 24, i ,  m 
002 24, 1, rnw4 
003 24, 1, m=+ b 

07-04-02-001 P 
002 
003 
004 

03-001 / (  Y, Z, T) 
002 
003 

2xy4L,-r, mz ,  i x Y z - T  

24, m, T 
24, rod, i 
24, mb, T 
24, m.b+d , 

24, m, ] 
24, m=+b, i" 
24, rob, 

07-05-01-001 
002 
003 
004 
005 
006 

02-001 
002 
003 
004 

4 lz'r, i x y z ,  i x r r  

P 4, i ,  i 
4a/4, 1, 
4=, i ,  
4, in,  i~ 
4=/4, id ,  ie 
4=, ld ,  ie 

4, i ,  i 
4(_a+b)/4,1_-, 
4a+b, 1, i 
4b/4, i ,  T 

I (  Y , Z ,  T)  

4 tz-r , m z ,  mT 

07-06-01-001 P 4, m, m 
002 4 . ,  m, m 
003 4, rod, m e 
004 4=, ma , m e 
005 4, rob, m b 
006 4 . ,  rob, mb 
007 4b, mb, mb 
008 4, rob+d, tnb+ e 
009 4=, rob+d, rob+ e 
010 4b, tr~+d, rth,+ e 

02-001 I(Y,  Z, T) 4, m, m 
002 4=, m, m 
003 4b/4, m, m~+ e 
004 4, m=+b, m=+ b 
005 4=, m=+b, m=+ b 
006 4b/4, m=+b, m=+ c 
007 4, mb, mb 
008 4=, mb, mb 
009 4b/4, mb, m e 

2 x y ,  4L,-r, m z ,  n'IT 

07-07-01-001 P 2 .1. 4, rn, m 
002 2 _L 4, rod, m e 
003 2 ± 4, mb, mb 
004 2 ± 4, mb+d, rob+ e 
005 2e+d .L 4, rod, m e 
006 2e÷d ± 4, m, m 
007 2e+ d _L 4, m~+d, rnb+ e 
008 2c+d .1. 4, mb, m b 
009 2 _1. 4b, m, m 
010 2 .L 4b, ma, mc 
011 2 .L 4b, rob, rn b 
012 2 ± 4b, rrh,+a, mb+e 
013 2 .1. %,  m=, m= 
014 2 _1_ 4b, m,+a, ma+ e 
015 2e+ d _L 4b, ma, m e 
016 2e+a _L 4b, m, rn 
017 2e+n _1. 4b, mb+a, mb+ c 

018 2e+ d ± 4b, mb, mb 
019 2e+d .1. 4b, m=+d, m=+e 
020 2c+d .L 4b, m=, rn= 

02-001 I(  Y, Z, T) 2 _L 4, m, m 
002 2 _L 4, m,+b, m=+ b 
003 2 _L 4, rob, m b 
004 .2 e _L 4b/4, mb+d, m 
005 2d ± %/4,  m=+d, m=+b 
006 2 d l 4b/4, m d , /'rib 
007 2 _L 4=+b, m, m 
008 2 .1. 4=.b, m**b, m=.,-b 
009 2 .L 4a+b, rob, m b 

Table 3 continued on p. 556. 

based on a parallelogram or monoclinic in 1173 but this 
point of  view concerns the family di orthogonal 
parallelograms whose centring types are P, S and D. 

Lastly the orthogonal parallelogram (XY) rec- 
tangle (ZT) family or family IV presents another 
peculiarity. Only two Bravais types of centred rec- 
tangles can appear: either the centred rectangle is 
orthogonal to the other two vectors of  the cell so that 

it is the Bravais type S(Z, T); or the centred rectangle 
is not orthogonal to the other two vectors of  the cell 
so that it is the Bravais type S( Y, Z)  [or S(X, Z), 
S(X, T), S( Y, T)]. 

The two types of  centring S( Y, Z)  and S( Y, T) 
which appear in the Z classes 04-02-03 and 04-02-04 
are in fact one and only one Bravais type; these two 
Z classes only differ in the position of the axis 1, 
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Table 3 (cont. 4) 

VII -08  O r t h o g o n a l  p a r a l l e l o g r a m  ( X Y )  hexagon (ZT)  R( Y, Z, T) centred 

3 tZT 31z-r, ] xyz, 1 

08-01-01-001 R(Y,Z,T)  3 08-04-01-001 R(Y,Z,T)  3, 1, 1 
002 3=/3 002 3,/3, 1, 1 

02-001 P 3 02-001 P 3, 1, 1 
002 3b/3 002 3b/3, i,  1 

2xv61zr 

08-02-01-001 R ( ~ Z , T )  26 

02-001 P 26 

3~r ,  mz, 1 

08-03-01-001 R(Y,Z,T)  3, m, 1 
002 3, mb, 1 

02-001 P 3, m, 1 
002 3, mb, 1 

3 tz--r, 1, mZ_2T 

08-03-03-001 P 3, 1, m 
002 3, 1, m b 

3~r, 1, ixvz-2r 

08-04-03-001 P 3, 1, i 
002 3b/3, 1, i 

2 x y 6 ~ r ,  mz, i x y z . r  

08-05-01-001 R(Y, Z, T) 26, m, i 
002 26, mb, T 

02-001 P 26, m, 
002 26, mb, T 

2xy6~-r, ixY-r, mz+7- 

08-05-03-001 P 26, 1, m 
002 26, 1, m b 

VII -09  O r t h o g o n a l  p a r a l l e l o g r a m  ( X Y )  hexagon (ZT) 

6~ 

09-01-01-001 P 6 
002 6b/6 
003 6b/3 
004 6 b 

2xy ,  3~rT 

09-02-01-001 P 2 ± 3 

2xy, 6tZT 

09-03-01-001 P 2 Z 6 
002 2 ± 6b 

61~r, mz, m- r 

09-04-01-001 P 6, m, m 
002 6b, m, m 
003 6, rob, m b 
004 6b, rob, m b 
005 6=, rob, mb 

6~r ,  ixyz ,  ixe-r 

09-05-01-001 P 6, 1, i 
002 6b/6, l,  
003 6b/3, 1, i 
004 6b, ], i 

2XV, 3~r ,  mz, 1 

09-06-01-001 P 2 .L 3, m, 1 
002 2 ± 3, rob, 1 

2X~., 31z-r, 1, mz+r 

09-06-02-001 P 2 .1_ 3, 1, m 
002 2 _L 3, 1, m b 

2 X y  , 61z-r , m z ,  mT 

09-07-01-001 P 2 J. 6, m, m 
002 2 ± 6b, m, m 
003 2 ± 6, mb, m b 
004 2 _1_ 6b, rob, mb 
005 2 _1. 6=, m b, m b 

which is either parallel to a side of  the rectangle or 
parallel to a side of the parallelogram. These two Z 
classes would be denoted 2, m, 1 S( Y, Z)  and 2, i ,  m 
S( Y, Z)  instead o f 2 / m  but in order to avoid changing 
the symbol of  the point group of this Q class, we 
prefer the introduction of another type of centring: 
S( Y, Z)  for the Z class 04-02-03 and S( Y, T) for the 
Z class 04-02-04, and we add the PSO T in the symbol 
of  the point group which is therefore denoted as 
2/m,i. 

Thus we can write the supports of  the translation 
vectors in a precise way for all the space groups of 
this Z class. 

Table 4. Di orthogonal parallelograms (XY)  (ZT) 
system 

In  the first column we give the names of the three Bravais types 
of this system. The letters P, S and D are def ined  in the caption 
to Table  2. The second column contains the three corresponding 
Bravais  flocks. 

Bravais types of lattices 
Di orthogonal parallelograms 

P 
Di orthogonal parallelograms 

S( Y, Z) 
Di orthogonal parallelograms 

D(X, T)( Y, Z) 

Bravais  flocks 
P2; P2a; P2_L2; P2d_L2; 

P2a ± 2b 
S( Y, Z)2; S( Y, Z)2~; S( Y, Z) 2 .t 2; 

S( Y, Z)2 d .L 2; S( Y, Z)2 d ± 2= 
D(X, T)( Y, Z)2; D(X, T)( Y, Z)2 ± 2 
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Table 5. WPV notation of the 76 crystallographic Z 
classes of  the seven mono-incommensurate systems 

We give the WPV notation of the 76 Z classes classified by family. 
The centring types P, S, D, F, I and R are explained in the caption 
to Table 2. In family IV 2, m, T and 2, 1, m are more convenient 
symbols for the Z classes than the symbol 2 / m  which is that of 
the corresponding Q class. Nevertheless we keep the WPV symbol 
2 /m for the polar point group. 

Family I Family IV Family VI Family VII 
1P 2, m, m P  24P 3R 

i4 P 2, m, m S(Z, T) 24 I 3 P 
2, m, m S ( Y , Z )  4P  26R 
2, m, m I 4 1 26 P 

Family II 2, m, m D 2_1_4 P 3, m R 
m P  2, m, m F  2±4I  3, m, 1 P 
m S  2, m, l P  24,1, raP 3,1, m P 
1P 2, m, I S ( Z , T )  24,1, m I 3,1R 
i S  2, m, I S ( Y , Z )  24, m, i P  3,1,1P 

i_LmP 2,1, m S ( Y , Z )  24, m, 1 I  3,1,1P 
l ± m S  2, m, l I 4, T,I P 26, m, l g 

2, m, l D 4,1,11 26, m, i P 
2, m,l F 4, m, m P 26,1, m P 

- - 

Family III 2,1,1 P 4, m, m I 
- _ 

2P 2 ,1 ,1S (Z ,T )  2J_4, m, m P  6P  
2S 2, 1, 1S(Y,Z) 2J.4, m, m l  2.1_3 P 

- - 

2D 2,1,11 2±6P  
- - 

2_L2P 2,1,1 D 6, m, m P 
_ - 

212S 2, 1, 1 F 6, 1, 1 P 
2&2 D 2±2, m, m P 2±3, m, 1 P 

2.1_2, m, m S(Z, T) 2.1.3, 1, m P 
2.1-2, m, m S ( Y , Z )  2&6, m, m P 
2±2, m, m I 
2±2, m, m D 
2&2, m, m F 

Finally, in Table 5, we give a list of the 76 MI Z 
classes in II :4 which corresponds to the same sub- 
divisions as those of Table 3. 

III. Concluding remarks 

We can compare MI crystallographic symmetries in 
the superspace [E 4 to the crystallographic symmetries 
in the physical space E 3, and, in particular, the number 
of space groups and Z classes. 

MI crystal in E 4 Crystal in E 3 

Space groups (Table 3) 371 219 
Z classes (Table 5) 76 73 
Point groups 30 32 
Bravais types (Table 2) 16 14 
Crystal systems 7 7 
Crystal families 6 6. 

If we allocate a particular role to the direction of 
the physical modulation, one of the 30 point groups, 
the point group 2, splits into two point groups 2 and 
2 v as we saw in a previous paper (Veysseyre et al., 
1989). 

Lastly, we state the correlation between five of these 
six crystal families. 

MI crystal families in E 4 
Right hyperprism based on triclinic 
Di orthogonal parallelograms 
Orthogonal parallelogram rectangle 
Orthogonal parallelogram square 
Orthogonal parallelogram hexagon 

We note that the last family splits into two systems: 
Orthogonal parallelogram equilateral triangle 
Orthogonal parallelogram hexagon 

Crystal families in E 3 

Triclinic 
Monoclinic 
Orthorhombic 
Tetragonal 
Hexagonal 

Rhombic 
Hexagonal. 

In a later paper a correspondence will be estab- 
lished between the notation proposed here and the 
notation given by de Wolff, Janssen & Janner (1981). 
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